Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.
نویسندگان
چکیده
Residual force enhancement (FE) following stretch of an activated muscle is a well accepted property of skeletal muscle contraction. However, the mechanism underlying FE remains unknown. A crucial assumption on which some proposed mechanisms are based is the idea that forces in the enhanced state cannot exceed the steady-state isometric force at a sarcomere length associated with optimal myofilament overlap. Although there are a number of studies in which forces in the enhanced state were compared with the corresponding isometric forces on the plateau of the force-length relationship, these studies either did not show enhanced forces above the plateau or, if they did, they lacked measurements of sarcomere lengths confirming the plateau region. Here, we revisited this question by optimizing stretch conditions and measuring the average sarcomere lengths in isolated fibers, and we found that FE exceeded the maximal isometric reference force obtained at the plateau of the force-length relationship consistently (mean+/-SD: 4.8+/-2.1%) and by up to 10%. When subtracting the passive component of FE from the total FE, the enhanced forces remained greater than the isometric plateau force (mean+/-SD: 4.3+/-2.0%). Calcium-induced increases in passive forces, known to be present in single fibers and myofibrils, are too small to account for the FE observed here. We conclude that FE cannot be explained exclusively with a stretch-induced development of sarcomere length nonuniformities, that FE in single fibers may be associated with the recruitment of additional contractile force, and that isometric steady-state forces in the enhanced state are not uniquely determined by sarcomere lengths.
منابع مشابه
Residual force enhancement in myofibrils and sarcomeres.
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owin...
متن کاملResidual force enhancement after stretch of contracting frog single muscle fibers
Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred on...
متن کاملCalcium sensitivity of residual force enhancement in rabbit skinned fibers.
Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependen...
متن کاملResidual Force Enhancement in Mechanically Isolated Half-sarcomeres
Our goal was to test if half-sarcomeres produce force enhancement after stretch. Single myofibrils from rabbit psoas were placed in a temperature-controlled (10°C) bath, where half-sarcomeres were isolated using two precalibrated glass micro-needles. The force produced during activation of the half-sarcomere was measured by tracking the displacement of the micro-needles. The half-sarcomere leng...
متن کاملThe mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.
When activated skeletal muscles are stretched, the force increases significantly. After the stretch, the force decreases and reaches a steady-state level that is higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon, referred to as residual force enhancement, has been observed for more than 50 years, but the mechanism remains elusive, g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2008